EIGENVALUES FOR MAXWELL'S EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS
hal.structure.identifier | Dipartimento di Matematica | |
dc.contributor.author | COLOMBINI, Ferruccio | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PETKOV, Vesselin | |
hal.structure.identifier | Department of Mathematics - University of Michigan | |
dc.contributor.author | RAUCH, Jeffery | |
dc.date.accessioned | 2024-04-04T03:11:35Z | |
dc.date.available | 2024-04-04T03:11:35Z | |
dc.date.created | 2016-09-25 | |
dc.date.issued | 2016-09 | |
dc.identifier.issn | 0921-7134 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193789 | |
dc.description.abstractEn | Let V (t) = e tG b , t ≥ 0, be the semigroup generated by Maxwell's equations in an exterior domain Ω ⊂ R 3 with dissipative boundary condition Etan − γ(x)(ν ∧ Btan) = 0, γ(x) > 0, ∀x ∈ Γ = ∂Ω. We prove that if γ(x) is nowhere equal to 1, then for every 0 < 1 and every N ∈ N the eigenvalues of G b lie in the region Λ ∪ R N , where Λ = {z ∈ C : | Re z| ≤ C Im z| 1 2 + + 1), Re z < 0}, R N = {z ∈ C : | Im z| ≤ C N (| Re z| + 1) −N , Re z < 0}. | |
dc.description.sponsorship | Opérateurs non-autoadjoints, analyse semiclassique et problèmes d'évolution - ANR-11-BS01-0019 | |
dc.language.iso | en | |
dc.publisher | IOS Press | |
dc.rights.uri | http://hal.archives-ouvertes.fr/licences/copyright/ | |
dc.subject.en | Maxwell's equations | |
dc.subject.en | dissipative boundary conditions | |
dc.subject.en | asymptotically disappearing solutions | |
dc.title.en | EIGENVALUES FOR MAXWELL'S EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Physique mathématique [math-ph] | |
bordeaux.journal | Asymptotic Analysis | |
bordeaux.volume | 99 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1-2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01256467 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01256467v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Asymptotic%20Analysis&rft.date=2016-09&rft.volume=99&rft.issue=1-2&rft.eissn=0921-7134&rft.issn=0921-7134&rft.au=COLOMBINI,%20Ferruccio&PETKOV,%20Vesselin&RAUCH,%20Jeffery&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |