Dirichlet-to-Neumann and elliptic operators on C 1+κ -domains: Poisson and Gaussian bounds
Langue
en
Article de revue
Ce document a été publié dans
Journal of Differential Equations. 2019
Elsevier
Résumé en anglais
We prove Poisson upper bounds for the heat kernel of the Dirichlet-to-Neumann operator with variable Hölder coefficients when the underlying domain is bounded and has a C 1+κ-boundary for some κ > 0. We also prove a number ...Lire la suite >
We prove Poisson upper bounds for the heat kernel of the Dirichlet-to-Neumann operator with variable Hölder coefficients when the underlying domain is bounded and has a C 1+κ-boundary for some κ > 0. We also prove a number of other results such as gradient estimates for heat kernels and Green functions G of elliptic operators with possibly complex-valued coefficients. We establish Hölder continuity of ∇ x ∇ y G up to the boundary. These results are used to prove L p-estimates for commutators of Dirichlet-to-Neumann operators on the boundary of C 1+κ-domains. Such estimates are the keystone in our approach for the Poisson bounds.< Réduire
Mots clés en anglais
58G11
AMS Subject Classification: 35K08
47B47
Keywords: Dirichlet-to-Neumann operator
Poisson bounds
elliptic operators with com-
plex coefficients
heat kernel bounds
gradient estimates for Green functions
commutator
estimates
Home institutions:
Origine
Importé de halUnités de recherche