Afficher la notice abrégée

hal.structure.identifierUniversity of Auckland [Auckland]
dc.contributor.authorTER ELST, A.F.M.
hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.accessioned2024-04-04T03:10:06Z
dc.date.available2024-04-04T03:10:06Z
dc.date.created2017
dc.date.issued2019
dc.identifier.issn0022-0396
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193661
dc.description.abstractEnWe prove Poisson upper bounds for the heat kernel of the Dirichlet-to-Neumann operator with variable Hölder coefficients when the underlying domain is bounded and has a C 1+κ-boundary for some κ > 0. We also prove a number of other results such as gradient estimates for heat kernels and Green functions G of elliptic operators with possibly complex-valued coefficients. We establish Hölder continuity of ∇ x ∇ y G up to the boundary. These results are used to prove L p-estimates for commutators of Dirichlet-to-Neumann operators on the boundary of C 1+κ-domains. Such estimates are the keystone in our approach for the Poisson bounds.
dc.language.isoen
dc.publisherElsevier
dc.subject.en58G11
dc.subject.enAMS Subject Classification: 35K08
dc.subject.en47B47
dc.subject.enKeywords: Dirichlet-to-Neumann operator
dc.subject.enPoisson bounds
dc.subject.enelliptic operators with com-
dc.subject.enplex coefficients
dc.subject.enheat kernel bounds
dc.subject.engradient estimates for Green functions
dc.subject.encommutator
dc.subject.enestimates
dc.subject.enHome institutions:
dc.title.enDirichlet-to-Neumann and elliptic operators on C 1+κ -domains: Poisson and Gaussian bounds
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.identifier.arxiv1705.10158
bordeaux.journalJournal of Differential Equations
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01528301
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01528301v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Differential%20Equations&rft.date=2019&rft.eissn=0022-0396&rft.issn=0022-0396&rft.au=TER%20ELST,%20A.F.M.&OUHABAZ,%20El%20Maati&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée