The system will be going down for regular maintenance. Please save your work and logout.
On powers of operators with spectrum in cantor sets and spectral synthesis
Language
en
Article de revue
This item was published in
Journal of Mathematical Analysis and Applications. 2018, vol. 462, n° 1, p. 764-776
Elsevier
English Abstract
For $\xi \in \big( 0, \frac{1}{2} \big)$, let $E_{\xi}$ be the perfect symmetric set associated with $\xi$, that is
$$
E_{\xi} = \Big\{ \exp \Big( 2i \pi (1-\xi) \sum_{n = 1}^{+\infty} \epsilon_{n} \xi^{n-1} \Big) : \, ...Read more >
For $\xi \in \big( 0, \frac{1}{2} \big)$, let $E_{\xi}$ be the perfect symmetric set associated with $\xi$, that is
$$
E_{\xi} = \Big\{ \exp \Big( 2i \pi (1-\xi) \sum_{n = 1}^{+\infty} \epsilon_{n} \xi^{n-1} \Big) : \, \epsilon_{n} = 0 \textrm{ or } 1 \quad (n \geq 1) \Big\}
$$
and
$$
b(\xi) = \frac{\log{\frac{1}{\xi}} - \log{2}}{2\log{\frac{1}{\xi}} - \log{2}}.
$$
Let $q\geq 3$ be an integer and $s$ be a nonnegative real number. We show that any invertible operator $T$ on a Banach space with spectrum contained in $E_{1/q}$ that satisfies
\begin{eqnarray*}
& & \big\| T^{n} \big\| = O \big( n^{s} \big), \,n \rightarrow +\infty \\
& \textrm{and} & \big\| T^{-n} \big\| = O \big( e^{n^{\beta}} \big), \, n \rightarrow +\infty \textrm{ for some } \beta < b(1/q),
\end{eqnarray*}
also satisfies the stronger property $\big\| T^{-n} \big\| = O \big( n^{s} \big), \, n \rightarrow +\infty.$ We also show that this result
is false for $E_\xi$ when $1/\xi$ is not a Pisot number and that the constant $b(1/q)$ is sharp. As a consequence we prove that, if $\omega$ is a submulticative weight such that $\omega(n)=(1+n)^s, \, (n \geq 0)$ and $C^{-1} (1+|n|)^s \leq \omega(-n) \leq C e^{n^{\beta}},\, (n\geq 0)$, for some constants $C>0$ and $\beta < b( 1/q),$ then $E_{1/q}$ satisfies spectral synthesis in the Beurling algebra of all continuous functions $f$ on the unit circle $\mathbb{T}$ such that
$\sum_{n = -\infty}^{+\infty} | \widehat{f}(n) | \omega (n) < +\infty$.Read less <
English Keywords
Operators
Growth of powers of operators
Spectral synthesis
Cantor sets
Origin
Hal imported