$L^p$-$L^q$ Maximal Regularity for some Operators associated with Linearized Incompressible Fluid-Rigid Body Problems
Langue
en
Article de revue
Ce document a été publié dans
Contemporary mathematics. 2018
American Mathematical Society
Résumé en anglais
We study an unbounded operator arising naturally after linearizing the system modelling the motion of a rigid body in a viscous incompressible fluid. We show that this operator is $\mathcal{R}$ sectorial in $L^q$ for every ...Lire la suite >
We study an unbounded operator arising naturally after linearizing the system modelling the motion of a rigid body in a viscous incompressible fluid. We show that this operator is $\mathcal{R}$ sectorial in $L^q$ for every $q \in (1,\infty)$, thus it has the maximal $L^p$-$L^q$ regularity property. Moreover, we show that the generated semigroup is exponentially stable with respect to the $L^q$ norm. Finally, we use these results to prove the global existence for small initial data, in an $L^p$-$L^q$ setting, for the original nonlinear problem.< Réduire
Mots clés en anglais
Maximal $L^p$ regularity
Fluid Structure interaction
Incompressible flow
Origine
Importé de halUnités de recherche