Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMAITY, Debayan
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTUCSNAK, Marius
dc.date.accessioned2024-04-04T03:08:14Z
dc.date.available2024-04-04T03:08:14Z
dc.date.issued2018
dc.identifier.issn0271-4132
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193511
dc.description.abstractEnWe study an unbounded operator arising naturally after linearizing the system modelling the motion of a rigid body in a viscous incompressible fluid. We show that this operator is $\mathcal{R}$ sectorial in $L^q$ for every $q \in (1,\infty)$, thus it has the maximal $L^p$-$L^q$ regularity property. Moreover, we show that the generated semigroup is exponentially stable with respect to the $L^q$ norm. Finally, we use these results to prove the global existence for small initial data, in an $L^p$-$L^q$ setting, for the original nonlinear problem.
dc.language.isoen
dc.publisherAmerican Mathematical Society
dc.subject.enMaximal $L^p$ regularity
dc.subject.enFluid Structure interaction
dc.subject.enIncompressible flow
dc.title.en$L^p$-$L^q$ Maximal Regularity for some Operators associated with Linearized Incompressible Fluid-Rigid Body Problems
dc.typeArticle de revue
dc.identifier.doi10.1090/conm/710
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalContemporary mathematics
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01626757
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01626757v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Contemporary%20mathematics&rft.date=2018&rft.eissn=0271-4132&rft.issn=0271-4132&rft.au=MAITY,%20Debayan&TUCSNAK,%20Marius&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée