$L^p$-$L^q$ Maximal Regularity for some Operators associated with Linearized Incompressible Fluid-Rigid Body Problems
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MAITY, Debayan | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | TUCSNAK, Marius | |
dc.date.accessioned | 2024-04-04T03:08:14Z | |
dc.date.available | 2024-04-04T03:08:14Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0271-4132 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193511 | |
dc.description.abstractEn | We study an unbounded operator arising naturally after linearizing the system modelling the motion of a rigid body in a viscous incompressible fluid. We show that this operator is $\mathcal{R}$ sectorial in $L^q$ for every $q \in (1,\infty)$, thus it has the maximal $L^p$-$L^q$ regularity property. Moreover, we show that the generated semigroup is exponentially stable with respect to the $L^q$ norm. Finally, we use these results to prove the global existence for small initial data, in an $L^p$-$L^q$ setting, for the original nonlinear problem. | |
dc.language.iso | en | |
dc.publisher | American Mathematical Society | |
dc.subject.en | Maximal $L^p$ regularity | |
dc.subject.en | Fluid Structure interaction | |
dc.subject.en | Incompressible flow | |
dc.title.en | $L^p$-$L^q$ Maximal Regularity for some Operators associated with Linearized Incompressible Fluid-Rigid Body Problems | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1090/conm/710 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Contemporary mathematics | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01626757 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01626757v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Contemporary%20mathematics&rft.date=2018&rft.eissn=0271-4132&rft.issn=0271-4132&rft.au=MAITY,%20Debayan&TUCSNAK,%20Marius&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |