Mathematical analysis of cardiac electromechanics with physiological ionic model
MROUE, Fatima
Département de Mathématiques et Informatique - Université de Nantes
Laboratoire de Mathématiques Jean Leray [LMJL]
Leer más >
Département de Mathématiques et Informatique - Université de Nantes
Laboratoire de Mathématiques Jean Leray [LMJL]
MROUE, Fatima
Département de Mathématiques et Informatique - Université de Nantes
Laboratoire de Mathématiques Jean Leray [LMJL]
Département de Mathématiques et Informatique - Université de Nantes
Laboratoire de Mathématiques Jean Leray [LMJL]
TALHOUK, Raafat
الجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] [LU / ULB]
< Leer menos
الجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] [LU / ULB]
Idioma
en
Article de revue
Este ítem está publicado en
Discrete and Continuous Dynamical Systems - Series B. 2019, vol. 24, n° 9, p. 34
American Institute of Mathematical Sciences
Resumen en inglés
This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential coupled with general physiological ionic models and ...Leer más >
This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential coupled with general physiological ionic models and subsequent deformation of the cardiac tissue. A prototype system belonging to this class is provided by the electromechanical bidomain model, which is frequently used to study and simulate electrophysiological waves in cardiac tissue. The coupling between muscle contraction, biochemical reactions and electric activity is introduced with a so-called active strain decomposition framework, where the material gradient of deformation is split into an active (electrophysiology-dependent) part and an elastic (passive) one. We prove existence of weak solutions to the underlying coupled electromechanical bidomain model under the assumption of linearized elastic behavior and a truncation of the updated nonlinear diffu-sivities. The proof of the existence result, which constitutes the main thrust of this paper, is proved by means of a non-degenerate approximation system, the Faedo-Galerkin method, and the compactness method.< Leer menos
Palabras clave en inglés
Weak solutions
Bidomain equations
Electro-mechanical coupling
Weak compactness method
Active deformation
Proyecto ANR
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Orígen
Importado de HalCentros de investigación