Afficher la notice abrégée

hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorBENDAHMANE, Mostafa
hal.structure.identifierDépartement de Mathématiques et Informatique - Université de Nantes
hal.structure.identifierLaboratoire de Mathématiques Jean Leray [LMJL]
dc.contributor.authorMROUE, Fatima
hal.structure.identifierÉcole Centrale de Nantes [ECN]
hal.structure.identifierLaboratoire de Mathématiques Jean Leray [LMJL]
dc.contributor.authorSAAD, Mazen
hal.structure.identifierالجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] [LU / ULB]
dc.contributor.authorTALHOUK, Raafat
dc.date.accessioned2024-04-04T03:04:44Z
dc.date.available2024-04-04T03:04:44Z
dc.date.issued2019
dc.identifier.issn1531-3492
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193181
dc.description.abstractEnThis paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential coupled with general physiological ionic models and subsequent deformation of the cardiac tissue. A prototype system belonging to this class is provided by the electromechanical bidomain model, which is frequently used to study and simulate electrophysiological waves in cardiac tissue. The coupling between muscle contraction, biochemical reactions and electric activity is introduced with a so-called active strain decomposition framework, where the material gradient of deformation is split into an active (electrophysiology-dependent) part and an elastic (passive) one. We prove existence of weak solutions to the underlying coupled electromechanical bidomain model under the assumption of linearized elastic behavior and a truncation of the updated nonlinear diffu-sivities. The proof of the existence result, which constitutes the main thrust of this paper, is proved by means of a non-degenerate approximation system, the Faedo-Galerkin method, and the compactness method.
dc.description.sponsorshipCentre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences
dc.subject.enWeak solutions
dc.subject.enBidomain equations
dc.subject.enElectro-mechanical coupling
dc.subject.enWeak compactness method
dc.subject.enActive deformation
dc.title.enMathematical analysis of cardiac electromechanics with physiological ionic model
dc.typeArticle de revue
dc.identifier.doi10.3934/dcdsb.2019035
dc.subject.halMathématiques [math]
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie
bordeaux.journalDiscrete and Continuous Dynamical Systems - Series B
bordeaux.page34
bordeaux.volume24
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue9
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01680593
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01680593v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20and%20Continuous%20Dynamical%20Systems%20-%20Series%20B&rft.date=2019&rft.volume=24&rft.issue=9&rft.spage=34&rft.epage=34&rft.eissn=1531-3492&rft.issn=1531-3492&rft.au=BENDAHMANE,%20Mostafa&MROUE,%20Fatima&SAAD,%20Mazen&TALHOUK,%20Raafat&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée