Level-Set method and stability condition for curvature-driven flows
GALUSINSKI, Cedric
Centre de Physique Théorique - UMR 6207 [CPT]
Centre de Physique Théorique - UMR 7332 [CPT]
Centre de Physique Théorique - UMR 6207 [CPT]
Centre de Physique Théorique - UMR 7332 [CPT]
GALUSINSKI, Cedric
Centre de Physique Théorique - UMR 6207 [CPT]
Centre de Physique Théorique - UMR 7332 [CPT]
< Reduce
Centre de Physique Théorique - UMR 6207 [CPT]
Centre de Physique Théorique - UMR 7332 [CPT]
Language
en
Article de revue
This item was published in
Comptes rendus hebdomadaires des séances de l'Académie des sciences. 2007-06-01, vol. 344, n° 11, p. 703-708
Gauthier-Villars
English Abstract
We consider models for the simulation of curvature-driven incompressible bifluid flows, where the surface tension term is discretized explicitly. From this formulation a numerical stability condition arises for which we ...Read more >
We consider models for the simulation of curvature-driven incompressible bifluid flows, where the surface tension term is discretized explicitly. From this formulation a numerical stability condition arises for which we present a new theoretical estimation for low and medium Reynolds numbers. We illustrate our analysis with numerical simulations of microfluidic flows using Level Set method. Finally, we propose a method to reduce computational cost induced by this stability condition for low flow velocities.Read less <
English Keywords
stability condition
bifluid flow
surface tension
level set
microfluidics
Origin
Hal imported