A classification of ECM-friendly families using modular curves
BARBULESCU, Razvan
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
SHINDE, Sudarshan
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs [OURAGAN]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs [OURAGAN]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
BARBULESCU, Razvan
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
SHINDE, Sudarshan
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs [OURAGAN]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
< Réduire
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs [OURAGAN]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Langue
en
Article de revue
Ce document a été publié dans
Mathematics of Computation. 2022 n° 91, p. 1405-1436
American Mathematical Society
Résumé en anglais
In this work, we establish a link between the classification of ECM-friendly curves and Mazur's program B, which consists in parameterizing all the families of elliptic curves with exceptional Galois image. Building upon ...Lire la suite >
In this work, we establish a link between the classification of ECM-friendly curves and Mazur's program B, which consists in parameterizing all the families of elliptic curves with exceptional Galois image. Building upon two recent works which treated the case of congruence subgroups of prime-power level which occur for infinitely many $j$-invariants, we prove that there are exactly 1525 families of rational elliptic curves with distinct Galois images which are cartesian products of subgroups of prime-power level. This makes a complete list of rational families of ECM-friendly elliptic curves, out of which less than 25 were known in the literature. We furthermore refine a heuristic of Montgomery to compare these families and conclude that the best 4 families which can be put in $a=-1$ twisted Edwards' form are new.< Réduire
Origine
Importé de halUnités de recherche