A classification of ECM-friendly families using modular curves
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)] | |
dc.contributor.author | BARBULESCU, Razvan | |
hal.structure.identifier | OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs [OURAGAN] | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)] | |
dc.contributor.author | SHINDE, Sudarshan | |
dc.date.accessioned | 2024-04-04T03:02:06Z | |
dc.date.available | 2024-04-04T03:02:06Z | |
dc.date.created | 2020-07-10 | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192950 | |
dc.description.abstractEn | In this work, we establish a link between the classification of ECM-friendly curves and Mazur's program B, which consists in parameterizing all the families of elliptic curves with exceptional Galois image. Building upon two recent works which treated the case of congruence subgroups of prime-power level which occur for infinitely many $j$-invariants, we prove that there are exactly 1525 families of rational elliptic curves with distinct Galois images which are cartesian products of subgroups of prime-power level. This makes a complete list of rational families of ECM-friendly elliptic curves, out of which less than 25 were known in the literature. We furthermore refine a heuristic of Montgomery to compare these families and conclude that the best 4 families which can be put in $a=-1$ twisted Edwards' form are new. | |
dc.language.iso | en | |
dc.publisher | American Mathematical Society | |
dc.title.en | A classification of ECM-friendly families using modular curves | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1090/mcom/3697 | |
dc.subject.hal | Informatique [cs]/Cryptographie et sécurité [cs.CR] | |
bordeaux.journal | Mathematics of Computation | |
bordeaux.page | 1405-1436 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 91 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01822144 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01822144v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematics%20of%20Computation&rft.date=2022&rft.issue=91&rft.spage=1405-1436&rft.epage=1405-1436&rft.eissn=0025-5718&rft.issn=0025-5718&rft.au=BARBULESCU,%20Razvan&SHINDE,%20Sudarshan&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |