Sur le sous-groupe des éléments de hauteur infinie du K2 d'un corps de nombres
Language
fr
Article de revue
This item was published in
Acta Arithmetica. 2006, vol. 122, p. 235-244
Instytut Matematyczny PAN
English Abstract
By using the logarithmic approach of the classical kernels for the K2 of number fields, we compute the 2-rank of the wild kernel WK2(F) and the 2-rank of the subgroup of infinite heigh elements in K2(F) in terms of positive ...Read more >
By using the logarithmic approach of the classical kernels for the K2 of number fields, we compute the 2-rank of the wild kernel WK2(F) and the 2-rank of the subgroup of infinite heigh elements in K2(F) in terms of positive class groups for any number field F.Read less <
English Keywords
wild kernel
logarithmic divisor classes
positive divisor classes
Origin
Hal imported