Couplings in $L^p$ distance of two Brownian motions and their Lévy area
Idioma
en
Article de revue
Este ítem está publicado en
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques. 2020
Institut Henri Poincaré (IHP)
Resumen en inglés
We study co-adapted couplings of (canonical hypoelliptic) diffu-sions on the (subRiemannian) Heisenberg group, that we call (Heisenberg) Brow-nian motions and are the joint laws of a planar Brownian motion with its Lévy ...Leer más >
We study co-adapted couplings of (canonical hypoelliptic) diffu-sions on the (subRiemannian) Heisenberg group, that we call (Heisenberg) Brow-nian motions and are the joint laws of a planar Brownian motion with its Lévy area. We show that contrary to the situation observed on Riemannian manifolds of non-negative Ricci curvature, for any co-adapted coupling, two Heisenberg Brownian motions starting at two given points can not stay at bounded distance for all time t ≥ 0. Actually, we prove the stronger result that they can not stay bounded in L p for p ≥ 2. We also study the coupling by reflection, and show that it stays bounded in L p for 0 ≤ p < 1. Finally, we explain how the results generalise to the Heisenberg groups of higher dimension< Leer menos
Orígen
Importado de HalCentros de investigación