Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBONNEFONT, Michel
hal.structure.identifierInstitut de Recherche Mathématique Avancée [IRMA]
dc.contributor.authorJUILLET, Nicolas
dc.date.accessioned2024-04-04T03:01:56Z
dc.date.available2024-04-04T03:01:56Z
dc.date.issued2020
dc.identifier.issn0246-0203
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192935
dc.description.abstractEnWe study co-adapted couplings of (canonical hypoelliptic) diffu-sions on the (subRiemannian) Heisenberg group, that we call (Heisenberg) Brow-nian motions and are the joint laws of a planar Brownian motion with its Lévy area. We show that contrary to the situation observed on Riemannian manifolds of non-negative Ricci curvature, for any co-adapted coupling, two Heisenberg Brownian motions starting at two given points can not stay at bounded distance for all time t ≥ 0. Actually, we prove the stronger result that they can not stay bounded in L p for p ≥ 2. We also study the coupling by reflection, and show that it stays bounded in L p for 0 ≤ p < 1. Finally, we explain how the results generalise to the Heisenberg groups of higher dimension
dc.language.isoen
dc.publisherInstitut Henri Poincaré (IHP)
dc.title.enCouplings in $L^p$ distance of two Brownian motions and their Lévy area
dc.typeArticle de revue
dc.identifier.doi10.1214/19-AIHP972
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1801.04109
bordeaux.journalAnnales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01671676
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01671676v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Annales%20de%20l'Institut%20Henri%20Poincar%C3%A9%20(B)%20Probabilit%C3%A9s%20et%20Statistiques&amp;rft.date=2020&amp;rft.eissn=0246-0203&amp;rft.issn=0246-0203&amp;rft.au=BONNEFONT,%20Michel&amp;JUILLET,%20Nicolas&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée