The basins of attraction of the global minimizers of the non-convex sparse spike estimation problem
Langue
en
Article de revue
Ce document a été publié dans
Inverse Problems. 2020-02-21
IOP Publishing
Résumé en anglais
The sparse spike estimation problem consists in estimating a number of off-the-grid impulsive sources from under-determined linear measurements. Information theoretic results ensure that the minimization of a non-convex ...Lire la suite >
The sparse spike estimation problem consists in estimating a number of off-the-grid impulsive sources from under-determined linear measurements. Information theoretic results ensure that the minimization of a non-convex functional is able to recover the spikes for adequately chosen measurements (deterministic or random). To solve this problem, methods inspired from the case of finite dimensional sparse estimation where a convex program is used have been proposed. Also greedy heuristics have shown nice practical results. However, little is known on the ideal non-convex minimization method. In this article, we study the shape of the global minimum of this non-convex functional: we give an explicit basin of attraction of the global minimum that shows that the non-convex problem becomes easier as the number of measurements grows. This has important consequences for methods involving descent algorithms (such as the greedy heuristic) and it gives insights for potential improvements of such descent methods.< Réduire
Origine
Importé de halUnités de recherche