Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTRAONMILIN, Yann
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAUJOL, Jean-François
dc.date.accessioned2024-04-04T02:59:59Z
dc.date.available2024-04-04T02:59:59Z
dc.date.issued2020-02-21
dc.identifier.issn0266-5611
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192786
dc.description.abstractEnThe sparse spike estimation problem consists in estimating a number of off-the-grid impulsive sources from under-determined linear measurements. Information theoretic results ensure that the minimization of a non-convex functional is able to recover the spikes for adequately chosen measurements (deterministic or random). To solve this problem, methods inspired from the case of finite dimensional sparse estimation where a convex program is used have been proposed. Also greedy heuristics have shown nice practical results. However, little is known on the ideal non-convex minimization method. In this article, we study the shape of the global minimum of this non-convex functional: we give an explicit basin of attraction of the global minimum that shows that the non-convex problem becomes easier as the number of measurements grows. This has important consequences for methods involving descent algorithms (such as the greedy heuristic) and it gives insights for potential improvements of such descent methods.
dc.language.isoen
dc.publisherIOP Publishing
dc.title.enThe basins of attraction of the global minimizers of the non-convex sparse spike estimation problem
dc.typeArticle de revue
dc.identifier.doi10.1088/1361-6420/ab5aa3
dc.subject.halInformatique [cs]/Théorie de l'information [cs.IT]
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.identifier.arxiv1811.12000
bordeaux.journalInverse Problems
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01938239
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01938239v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inverse%20Problems&rft.date=2020-02-21&rft.eissn=0266-5611&rft.issn=0266-5611&rft.au=TRAONMILIN,%20Yann&AUJOL,%20Jean-Fran%C3%A7ois&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée