Properly proximal groups and their von Neumann algebras
Langue
en
Article de revue
Ce document a été publié dans
Annales Scientifiques de l'École Normale Supérieure. 2021
Société mathématique de France
Résumé en anglais
We introduce a wide class of countable groups, called properly proximal, which contains all non-amenable bi-exact groups, all non-elementary convergence groups, and all lattices in non-compact semi-simple Lie groups, but ...Lire la suite >
We introduce a wide class of countable groups, called properly proximal, which contains all non-amenable bi-exact groups, all non-elementary convergence groups, and all lattices in non-compact semi-simple Lie groups, but excludes all inner amenable groups. We show that crossed product II$_1$ factors arising from free ergodic probability measure preserving actions of groups in this class have at most one weakly compact Cartan subalgebra, up to unitary conjugacy. As an application, we obtain the first $W^*$-strong rigidity results for compact actions of $SL_d(\mathbb Z)$ for $d \geq 3$.< Réduire
Origine
Importé de halUnités de recherche