Properly proximal groups and their von Neumann algebras
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BOUTONNET, Rémi | |
hal.structure.identifier | Mathematics Department; University of California San Diego | |
dc.contributor.author | IOANA, Adrian | |
hal.structure.identifier | Vanderbilt University [Nashville] | |
dc.contributor.author | PETERSON, Jesse | |
dc.date.accessioned | 2024-04-04T02:59:16Z | |
dc.date.available | 2024-04-04T02:59:16Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0012-9593 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192728 | |
dc.description.abstractEn | We introduce a wide class of countable groups, called properly proximal, which contains all non-amenable bi-exact groups, all non-elementary convergence groups, and all lattices in non-compact semi-simple Lie groups, but excludes all inner amenable groups. We show that crossed product II$_1$ factors arising from free ergodic probability measure preserving actions of groups in this class have at most one weakly compact Cartan subalgebra, up to unitary conjugacy. As an application, we obtain the first $W^*$-strong rigidity results for compact actions of $SL_d(\mathbb Z)$ for $d \geq 3$. | |
dc.language.iso | en | |
dc.publisher | Société mathématique de France | |
dc.title.en | Properly proximal groups and their von Neumann algebras | |
dc.type | Article de revue | |
dc.identifier.doi | 10.24033/asens.2462 | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Mathématiques [math]/Théorie des groupes [math.GR] | |
dc.subject.hal | Mathématiques [math]/Algèbres d'opérateurs [math.OA] | |
dc.subject.hal | Mathématiques [math]/Systèmes dynamiques [math.DS] | |
dc.identifier.arxiv | 1809.01881 | |
bordeaux.journal | Annales Scientifiques de l'École Normale Supérieure | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02361525 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02361525v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annales%20Scientifiques%20de%20l'%C3%89cole%20Normale%20Sup%C3%A9rieure&rft.date=2021&rft.eissn=0012-9593&rft.issn=0012-9593&rft.au=BOUTONNET,%20R%C3%A9mi&IOANA,%20Adrian&PETERSON,%20Jesse&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |