Littlewood-Paley-Stein Functions for Hodge-de Rham and Schrödinger Operators
Langue
en
Article de revue
Ce document a été publié dans
The Journal of Geometric Analysis. 2021
Springer
Date de soutenance
2021Résumé en anglais
We study the Littlewood-Paley-Stein functions associated with Hodge-de Rham and Schrödinger operators on Riemannian manifolds. Under conditions on the Ricci curvature we prove their boundedness on L p for p in some interval ...Lire la suite >
We study the Littlewood-Paley-Stein functions associated with Hodge-de Rham and Schrödinger operators on Riemannian manifolds. Under conditions on the Ricci curvature we prove their boundedness on L p for p in some interval (p 1 , 2] and make a link to the Riesz Transform. An important fact is that we do not make assumptions of doubling measure or estimates on the heat kernel in this case. For p > 2 we give a criterion to obtain the boundedness of the vertical Littlewood-Paley-Stein function associated with Schrödinger operators on L p .< Réduire
Project ANR
Analyse Réelle et Géométrie - ANR-18-CE40-0012
Origine
Importé de halUnités de recherche