Littlewood-Paley-Stein Functions for Hodge-de Rham and Schrödinger Operators
Language
en
Article de revue
This item was published in
The Journal of Geometric Analysis. 2021
Springer
Date
2021English Abstract
We study the Littlewood-Paley-Stein functions associated with Hodge-de Rham and Schrödinger operators on Riemannian manifolds. Under conditions on the Ricci curvature we prove their boundedness on L p for p in some interval ...Read more >
We study the Littlewood-Paley-Stein functions associated with Hodge-de Rham and Schrödinger operators on Riemannian manifolds. Under conditions on the Ricci curvature we prove their boundedness on L p for p in some interval (p 1 , 2] and make a link to the Riesz Transform. An important fact is that we do not make assumptions of doubling measure or estimates on the heat kernel in this case. For p > 2 we give a criterion to obtain the boundedness of the vertical Littlewood-Paley-Stein function associated with Schrödinger operators on L p .Read less <
ANR Project
Analyse Réelle et Géométrie - ANR-18-CE40-0012
Origin
Hal imported