The system will be going down for regular maintenance. Please save your work and logout.
Distribution of short sums of classical Kloosterman sums of prime powers moduli
Language
en
Article de revue
This item was published in
Annales Mathématiques Blaise Pascal. 2020
Université Blaise-Pascal - Clermont-Ferrand
Date
2020English Abstract
Corentin Perret-Gentil proved, under some very general conditions, that short sums of $\ell$-adic trace functions over finite fields of varying center converges in law to a Gaussian random variable or vector. The main ...Read more >
Corentin Perret-Gentil proved, under some very general conditions, that short sums of $\ell$-adic trace functions over finite fields of varying center converges in law to a Gaussian random variable or vector. The main inputs are P.~Deligne's equidistribution theorem, N.~Katz' works and the results surveyed in \cite{MR3338119}. In particular, this applies to $2$-dimensional Kloosterman sums $\mathsf{Kl}_{2,\mathbb{F}_q}$ studied by N.~Katz in \cite{MR955052} and in \cite{MR1081536} when the field $\mathbb{F}_q$ gets large. \par This article considers the case of short sums of normalized classical Kloosterman sums of prime powers moduli $\mathsf{Kl}_{p^n}$, as $p$ tends to infinity among the prime numbers and $n\geq 2$ is a fixed integer. A convergence in law towards a real-valued standard Gaussian random variable is proved under some very natural conditions.Read less <
Origin
Hal imported