Travelling waves in invasion processes with pathogens
DUCROT, Arnaud
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
DUCROT, Arnaud
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Langue
en
Article de revue
Ce document a été publié dans
Mathematical Models and Methods in Applied Sciences. 2008, vol. 18, p. 325-349
World Scientific Publishing
Résumé en anglais
This work is devoted to the study of a singular reaction--diffusion system arising in modelling the introduction of a lethal pathogen within an invading host population. In the absence of the pathogen the host population ...Lire la suite >
This work is devoted to the study of a singular reaction--diffusion system arising in modelling the introduction of a lethal pathogen within an invading host population. In the absence of the pathogen the host population exhibits a bistable dynamics (or Allee effect). Earlier numerical simulations of the singular SI model under consideration have exhibited stable travelling waves and also, under some circumstances, a reversal of the wave front speed due to the introduction of the pathogen. Here we prove the existence of such travelling wave solutions, study their linear stability and give analytical conditions yielding a reversal of the wave front speed, that is the invading host population may eventually retreat following the introduction of the lethal pathogen.< Réduire
Mots clés en anglais
singular reaction-diffusion system
travelling waves
linear stability
front reversal
invasion and persistence
SI epidemic model
Origine
Importé de halUnités de recherche