Travelling waves in invasion processes with pathogens
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
dc.contributor.author | DUCROT, Arnaud | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
dc.contributor.author | LANGLAIS, Michel | |
dc.date.accessioned | 2024-04-04T02:54:05Z | |
dc.date.available | 2024-04-04T02:54:05Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0218-2025 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192242 | |
dc.description.abstractEn | This work is devoted to the study of a singular reaction--diffusion system arising in modelling the introduction of a lethal pathogen within an invading host population. In the absence of the pathogen the host population exhibits a bistable dynamics (or Allee effect). Earlier numerical simulations of the singular SI model under consideration have exhibited stable travelling waves and also, under some circumstances, a reversal of the wave front speed due to the introduction of the pathogen. Here we prove the existence of such travelling wave solutions, study their linear stability and give analytical conditions yielding a reversal of the wave front speed, that is the invading host population may eventually retreat following the introduction of the lethal pathogen. | |
dc.language.iso | en | |
dc.publisher | World Scientific Publishing | |
dc.subject.en | singular reaction-diffusion system | |
dc.subject.en | travelling waves | |
dc.subject.en | linear stability | |
dc.subject.en | front reversal | |
dc.subject.en | invasion and persistence | |
dc.subject.en | SI epidemic model | |
dc.title.en | Travelling waves in invasion processes with pathogens | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Mathematical Models and Methods in Applied Sciences | |
bordeaux.page | 325-349 | |
bordeaux.volume | 18 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00269150 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00269150v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Models%20and%20Methods%20in%20Applied%20Sciences&rft.date=2008&rft.volume=18&rft.spage=325-349&rft.epage=325-349&rft.eissn=0218-2025&rft.issn=0218-2025&rft.au=DUCROT,%20Arnaud&LANGLAIS,%20Michel&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |