Stabilization strategies for some reaction-diffusion systems
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Langue
en
Article de revue
Ce document a été publié dans
Nonlinear Analysis: Real World Applications. 2009, vol. 10, p. 345-357
Elsevier
Résumé en anglais
A two-component reaction-diffusion system is considered. The question of stabilizing to zero one of the components of the solution via an internal control acting on a small subdomain and preserving nonnegativity of both ...Lire la suite >
A two-component reaction-diffusion system is considered. The question of stabilizing to zero one of the components of the solution via an internal control acting on a small subdomain and preserving nonnegativity of both components is investigated. Our results apply to predator-prey systems< Réduire
Mots clés en anglais
Reaction-diffusion system
internal stabilization
comparison principle
predator-prey system
Origine
Importé de halUnités de recherche