Stabilization strategies for some reaction-diffusion systems
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Idioma
en
Article de revue
Este ítem está publicado en
Nonlinear Analysis: Real World Applications. 2009, vol. 10, p. 345-357
Elsevier
Resumen en inglés
A two-component reaction-diffusion system is considered. The question of stabilizing to zero one of the components of the solution via an internal control acting on a small subdomain and preserving nonnegativity of both ...Leer más >
A two-component reaction-diffusion system is considered. The question of stabilizing to zero one of the components of the solution via an internal control acting on a small subdomain and preserving nonnegativity of both components is investigated. Our results apply to predator-prey systems< Leer menos
Palabras clave en inglés
Reaction-diffusion system
internal stabilization
comparison principle
predator-prey system
Orígen
Importado de HalCentros de investigación