Large sets with small doubling modulo p are well covered by an arithmetic progression
Idioma
en
Article de revue
Este ítem está publicado en
Annales de l'Institut Fourier. 2009, vol. 59, n° 5, p. 2043--2060
Association des Annales de l'Institut Fourier
Resumen en inglés
We prove that there is a small but fixed positive integer e such that for every prime larger than a fixed integer, every subset S of the integers modulo p which satisfies |2S|<(2+e)|S| and 2(|2S|)-2|S|+2 < p is contained ...Leer más >
We prove that there is a small but fixed positive integer e such that for every prime larger than a fixed integer, every subset S of the integers modulo p which satisfies |2S|<(2+e)|S| and 2(|2S|)-2|S|+2 < p is contained in an arithmetic progression of length |2S|-|S|+1. This is the first result of this nature which places no unnecessary restrictions on the size of S.< Leer menos
Orígen
Importado de HalCentros de investigación