Large sets with small doubling modulo p are well covered by an arithmetic progression
Langue
en
Article de revue
Ce document a été publié dans
Annales de l'Institut Fourier. 2009, vol. 59, n° 5, p. 2043--2060
Association des Annales de l'Institut Fourier
Résumé en anglais
We prove that there is a small but fixed positive integer e such that for every prime larger than a fixed integer, every subset S of the integers modulo p which satisfies |2S|<(2+e)|S| and 2(|2S|)-2|S|+2 < p is contained ...Lire la suite >
We prove that there is a small but fixed positive integer e such that for every prime larger than a fixed integer, every subset S of the integers modulo p which satisfies |2S|<(2+e)|S| and 2(|2S|)-2|S|+2 < p is contained in an arithmetic progression of length |2S|-|S|+1. This is the first result of this nature which places no unnecessary restrictions on the size of S.< Réduire
Origine
Importé de halUnités de recherche