The system will be going down for regular maintenance. Please save your work and logout.
Perturbation, Interpolation, and Maximal Regularity
Language
en
Article de revue
This item was published in
Advances in Differential Equations. 2006, vol. 11, n° 2, p. 201-240
Khayyam Publishing
English Abstract
We prove perturbation theorems for sectoriality and $R$--sectoriality in Banach spaces, which yield results on perturbation of generators of analytic semigroups and on perturbation of maximal $L^p$--regularity. For a given ...Read more >
We prove perturbation theorems for sectoriality and $R$--sectoriality in Banach spaces, which yield results on perturbation of generators of analytic semigroups and on perturbation of maximal $L^p$--regularity. For a given sectorial or $R$--sectorial operator $A$ in a Banach space $X$ we give conditions on intermediate spaces $Z$ and $W$ such that, for an operator $S: Z\to W$ of small norm, the perturbed operator $A+S$ is again sectorial or $R$--sectorial, respectively. These conditions are obtained by factorising the perturbation as $S= -BC$, where $B$ acts on an auxiliary Banach space $Y$ and $C$ maps into $Y$. Our results extend previous work on perturbations in the scale of fractional domain spaces associated with $A$ and allow for a greater flexibility in choosing intermediate spaces for the action of perturbation operators. At the end we illustrate our results with several examples, in particular with an application to a rough boundary value problem.Read less <
English Keywords
perturbation
sectoriality
$R$-sectoriality
Origin
Hal imported