Model Reduction by Separation of Variables: A Comparison Between Hierarchical Model Reduction and Proper Generalized Decomposition
CARLINO, Michele Giuliano
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
CARLINO, Michele Giuliano
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Idioma
en
Chapitre d'ouvrage
Este ítem está publicado en
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. 2020-08-12, vol. LNCSE - Lecture Notes in Computational Science and Engineering, n° 134, p. 61-77
Springer
Resumen en inglés
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems ...Leer más >
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems to highlight pros and cons of the two procedures, both from a methodological and a numerical viewpoint.< Leer menos
Orígen
Importado de HalCentros de investigación