Model Reduction by Separation of Variables: A Comparison Between Hierarchical Model Reduction and Proper Generalized Decomposition
CARLINO, Michele Giuliano
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
CARLINO, Michele Giuliano
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Langue
en
Chapitre d'ouvrage
Ce document a été publié dans
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. 2020-08-12, vol. LNCSE - Lecture Notes in Computational Science and Engineering, n° 134, p. 61-77
Springer
Résumé en anglais
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems ...Lire la suite >
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variables to perform a model reduction. After setting the basics, we exemplify these techniques on some standard elliptic problems to highlight pros and cons of the two procedures, both from a methodological and a numerical viewpoint.< Réduire
Origine
Importé de halUnités de recherche