An algorithm for non-convex off-the-grid sparse spike estimation with a minimum separation constraint
TRAONMILIN, Yann
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
TRAONMILIN, Yann
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Communication dans un congrès
Este ítem está publicado en
in Proceedings of iTWIST'20, Paper-ID: 7, Nantes, France, December, 2-4, 2020, 2020-12-02, Nantes.
Resumen en inglés
Theoretical results show that sparse off-the-grid spikes can be estimated from (possibly compressive) Fourier measurements under a minimum separation assumption. We propose a practical algorithm to minimize the corresponding ...Leer más >
Theoretical results show that sparse off-the-grid spikes can be estimated from (possibly compressive) Fourier measurements under a minimum separation assumption. We propose a practical algorithm to minimize the corresponding non-convex functional based on a projected gradient descent coupled with an initialization procedure. We give qualitative insights on the theoretical foundations of the algorithm and provide experiments showing its potential for imaging problems.< Leer menos
Orígen
Importado de HalCentros de investigación