Definability of mixed period maps
BRUNEBARBE, Yohan
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
KLINGLER, Bruno
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
Leer más >
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
BRUNEBARBE, Yohan
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
KLINGLER, Bruno
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
< Leer menos
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We equip integral graded-polarized mixed period spaces with a natural $\mathbb{R}_{alg}$-definable analytic structure, and prove that any period map associated to an admissible variation of integral graded-polarized mixed ...Leer más >
We equip integral graded-polarized mixed period spaces with a natural $\mathbb{R}_{alg}$-definable analytic structure, and prove that any period map associated to an admissible variation of integral graded-polarized mixed Hodge structures is definable in $\mathbb{R}_{an,exp}$ with respect to this structure. As a consequence we reprove that the zero loci of admissible normal functions are algebraic.< Leer menos
Orígen
Importado de HalCentros de investigación