Definability of mixed period maps
BRUNEBARBE, Yohan
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
KLINGLER, Bruno
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
Voir plus >
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
BRUNEBARBE, Yohan
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
KLINGLER, Bruno
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
< Réduire
Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin [HU Berlin]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We equip integral graded-polarized mixed period spaces with a natural $\mathbb{R}_{alg}$-definable analytic structure, and prove that any period map associated to an admissible variation of integral graded-polarized mixed ...Lire la suite >
We equip integral graded-polarized mixed period spaces with a natural $\mathbb{R}_{alg}$-definable analytic structure, and prove that any period map associated to an admissible variation of integral graded-polarized mixed Hodge structures is definable in $\mathbb{R}_{an,exp}$ with respect to this structure. As a consequence we reprove that the zero loci of admissible normal functions are algebraic.< Réduire
Origine
Importé de halUnités de recherche