Rational Hypergeometric Ramanujan Identities for $1/\pi^c$: Survey and Generalizations
COHEN, Henri
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
GUILLERA, Jesús
Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
COHEN, Henri
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
GUILLERA, Jesús
Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
< Réduire
Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We give a simple unified proof for all existing rational hypergeometric Ramanujan identities for $1/\pi$, and give a complete survey (without proof) of several generalizations: rational hypergeometric identities for ...Lire la suite >
We give a simple unified proof for all existing rational hypergeometric Ramanujan identities for $1/\pi$, and give a complete survey (without proof) of several generalizations: rational hypergeometric identities for $1/\pi^c$, Taylor expansions, upside-down formulas, and supercongruences.< Réduire
Origine
Importé de halUnités de recherche