Rational Hypergeometric Ramanujan Identities for $1/\pi^c$: Survey and Generalizations
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Analyse cryptographique et arithmétique [CANARI] | |
dc.contributor.author | COHEN, Henri | |
hal.structure.identifier | Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse | |
dc.contributor.author | GUILLERA, Jesús | |
dc.date.accessioned | 2024-04-04T02:47:19Z | |
dc.date.available | 2024-04-04T02:47:19Z | |
dc.date.created | 2021 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191630 | |
dc.description.abstractEn | We give a simple unified proof for all existing rational hypergeometric Ramanujan identities for $1/\pi$, and give a complete survey (without proof) of several generalizations: rational hypergeometric identities for $1/\pi^c$, Taylor expansions, upside-down formulas, and supercongruences. | |
dc.language.iso | en | |
dc.title.en | Rational Hypergeometric Ramanujan Identities for $1/\pi^c$: Survey and Generalizations | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 2101.12592 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03139250 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03139250v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=COHEN,%20Henri&GUILLERA,%20Jes%C3%BAs&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |