Brenier-Schrödinger problem on compact manifold with boundary
GARCÍA-ZELADA, David
Institut de Mathématiques de Marseille [I2M]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Institut de Mathématiques de Marseille [I2M]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
GARCÍA-ZELADA, David
Institut de Mathématiques de Marseille [I2M]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
< Reduce
Institut de Mathématiques de Marseille [I2M]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Language
en
Article de revue
This item was published in
Stochastic Analysis and Applications. 2021-05-18, vol. 40, n° 3
Taylor & Francis: STM, Behavioural Science and Public Health Titles
English Abstract
We consider the Brenier-Schrödinger problem on compact manifolds with boundary. In the spirit of a work by Arnaudon, Cruzeiro, Léonard and Zambrini, we study the kinetic property of regular solutions and obtain a link to ...Read more >
We consider the Brenier-Schrödinger problem on compact manifolds with boundary. In the spirit of a work by Arnaudon, Cruzeiro, Léonard and Zambrini, we study the kinetic property of regular solutions and obtain a link to the Navier-Stokes equations with an impermeability condition. We also enhance the class of models for which the problem admits a unique solution. This involves a method of taking quotients by reflection groups for which we give several examples.Read less <
English Keywords
Brenier-Schrödinger
entropy
manifold with boundary
reflected Brownian motion
Navier-Stokes equations
Origin
Hal imported