Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic
Idioma
en
Article de revue
Este ítem está publicado en
Journal of the American Mathematical Society. 2022, vol. 35, p. 581-624
American Mathematical Society
Resumen en inglés
We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. More generally, we prove that it can be solved in the field ...Leer más >
We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. More generally, we prove that it can be solved in the field of cardinality $p^n$ in expected time $(pn)^{2\log_2(n) + O(1)}$.< Leer menos
Proyecto europeo
Algebraic Methods for Stronger Crypto
Orígen
Importado de HalCentros de investigación