Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic
Langue
en
Article de revue
Ce document a été publié dans
Journal of the American Mathematical Society. 2022, vol. 35, p. 581-624
American Mathematical Society
Résumé en anglais
We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. More generally, we prove that it can be solved in the field ...Lire la suite >
We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. More generally, we prove that it can be solved in the field of cardinality $p^n$ in expected time $(pn)^{2\log_2(n) + O(1)}$.< Réduire
Projet Européen
Algebraic Methods for Stronger Crypto
Origine
Importé de halUnités de recherche