Duals of linearized Reed-Solomon codes
CARUSO, Xavier
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
DURAND, Amaury
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
CARUSO, Xavier
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
DURAND, Amaury
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Language
en
Article de revue
This item was published in
Designs, Codes and Cryptography. 2023, vol. 91, n° 1, p. 241-271
Springer Verlag
English Abstract
We give a description of the duals of linearized Reed-Solomon codes in terms of codes obtained by taking residues of Ore rational functions. Our construction shows in particular that, under some assumptions on the base ...Read more >
We give a description of the duals of linearized Reed-Solomon codes in terms of codes obtained by taking residues of Ore rational functions. Our construction shows in particular that, under some assumptions on the base field, the class of linearized Reed-Solomon codes is stable under duality. As a byproduct of our work, we develop a theory of residues in the Ore setting.Read less <
ANR Project
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Origin
Hal imported