A zero-one law for invariant measures and a local limit theorem for coefficients of random walks on the general linear group
Language
en
Article de revue
This item was published in
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques. 2021
Institut Henri Poincaré (IHP)
Date
2021English Abstract
We prove a zero-one law for the stationary measure for algebraic sets generalizing the results of Furstenberg [13] and Guivarc'h and Le Page [21]. As an application, we establish a local limit theorem for the coefficients ...Read more >
We prove a zero-one law for the stationary measure for algebraic sets generalizing the results of Furstenberg [13] and Guivarc'h and Le Page [21]. As an application, we establish a local limit theorem for the coefficients of random walks on the general linear group. Résumé. Nous prouvons une loi zéro-un pour la mesure stationnaire pour des ensembles algébriques en généralisant les résultats de Furstenberg [13] et Guivarc'h et Le Page [21]. Comme application, nous établissons un théorème local limite pour les coefficients de marches aléatoires sur le groupe linéaire général.Read less <
English Keywords
MSC2020 subject classifications: Primary 60B15
15B52
37A30
secondary 60B20 General linear group
zero-one law
stationary measure
random matrices
regularity
algebraic set
ANR Project
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origin
Hal imported