On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field
Language
en
Communication dans un congrès
This item was published in
Spectral and Scattering Theory for Quantum Magnetic Systems, Spectral and Scattering Theory for Quantum Magnetic Systems, Spectral and Scattering Theory for Quantum Magnetic Systems, 2008-07. 2009p. 1-24
English Abstract
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and ...Read more >
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \mapsto E'(P_3)$ is the derivative of the map $P_3 \mapsto E(P_3) = \inf \sigma (H(P_3))$. If $E'(P_3) \neq 0$, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant.Read less <
Origin
Hal imported