A positive cell vertex godunov scheme for a beeler-reuter based model of cardiac electrical activity
BENDAHMANE, Mostafa
Institut de Mathématiques de Bordeaux [IMB]
Inria Bordeaux - Sud-Ouest
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Inria Bordeaux - Sud-Ouest
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
BENDAHMANE, Mostafa
Institut de Mathématiques de Bordeaux [IMB]
Inria Bordeaux - Sud-Ouest
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Inria Bordeaux - Sud-Ouest
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Langue
en
Article de revue
Ce document a été publié dans
Numerical Methods for Partial Differential Equations. 2021-01, vol. 37, n° 1, p. 262-301
Wiley
Résumé en anglais
The monodomain model is a widely used model in electrocardiology to simulate the propagation of electrical potential in the myocardium. In this paper, we investigate a positive nonlinear control volume finite element (CVFE) ...Lire la suite >
The monodomain model is a widely used model in electrocardiology to simulate the propagation of electrical potential in the myocardium. In this paper, we investigate a positive nonlinear control volume finite element (CVFE) scheme, based on Godunov's flux approximation of the diffusion term, for the monodomain model coupled to a physiological ionic model (the Beeler-Reuter model) and using an anisotropic diffusion tensor. In this scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in conforming finite element methods. The diffusion term which involves an anisotropic tensor is discretized on a dual mesh using the diffusion fluxes provided by the conforming finite element reconstruction on the primal mesh and the other terms are discretized by means of an upwind finite volume method on the dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on the transmissibility coefficients. By using a compactness argument, we obtain the convergence of the discrete solution and as a consequence, we get the existence of a weak solution of the original model. Finally, we illustrate the efficiency of the proposed scheme by exhibiting some numerical results.< Réduire
Mots clés en anglais
Monodomain model
Finite volume
Finite Element
Godunov Scheme
Maximum principle
Convergence
Origine
Importé de halUnités de recherche