A positive cell vertex godunov scheme for a beeler-reuter based model of cardiac electrical activity
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Inria Bordeaux - Sud-Ouest | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
dc.contributor.author | BENDAHMANE, Mostafa | |
hal.structure.identifier | Université Libanaise, Ecole Doctorale des Sciences et de Technologie | |
dc.contributor.author | MROUÉ, Fatima | |
hal.structure.identifier | École Centrale de Nantes [ECN] | |
dc.contributor.author | SAAD, Mazen | |
dc.date.accessioned | 2024-04-04T02:42:45Z | |
dc.date.available | 2024-04-04T02:42:45Z | |
dc.date.issued | 2021-01 | |
dc.identifier.issn | 0749-159X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191272 | |
dc.description.abstractEn | The monodomain model is a widely used model in electrocardiology to simulate the propagation of electrical potential in the myocardium. In this paper, we investigate a positive nonlinear control volume finite element (CVFE) scheme, based on Godunov's flux approximation of the diffusion term, for the monodomain model coupled to a physiological ionic model (the Beeler-Reuter model) and using an anisotropic diffusion tensor. In this scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in conforming finite element methods. The diffusion term which involves an anisotropic tensor is discretized on a dual mesh using the diffusion fluxes provided by the conforming finite element reconstruction on the primal mesh and the other terms are discretized by means of an upwind finite volume method on the dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on the transmissibility coefficients. By using a compactness argument, we obtain the convergence of the discrete solution and as a consequence, we get the existence of a weak solution of the original model. Finally, we illustrate the efficiency of the proposed scheme by exhibiting some numerical results. | |
dc.language.iso | en | |
dc.publisher | Wiley | |
dc.subject.en | Monodomain model | |
dc.subject.en | Finite volume | |
dc.subject.en | Finite Element | |
dc.subject.en | Godunov Scheme | |
dc.subject.en | Maximum principle | |
dc.subject.en | Convergence | |
dc.title.en | A positive cell vertex godunov scheme for a beeler-reuter based model of cardiac electrical activity | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1002/num.22528 | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
bordeaux.journal | Numerical Methods for Partial Differential Equations | |
bordeaux.page | 262-301 | |
bordeaux.volume | 37 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03534773 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03534773v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Numerical%20Methods%20for%20Partial%20Differential%20Equations&rft.date=2021-01&rft.volume=37&rft.issue=1&rft.spage=262-301&rft.epage=262-301&rft.eissn=0749-159X&rft.issn=0749-159X&rft.au=BENDAHMANE,%20Mostafa&MROU%C3%89,%20Fatima&SAAD,%20Mazen&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |