Annulateurs circulaires des groupes de classes logarithmiques
Idioma
fr
Article de revue
Este ítem está publicado en
Annales de l'Institut Fourier. 2023
Association des Annales de l'Institut Fourier
Fecha de defensa
2023Resumen
Étant donnés un corps abélien réel F de groupe G et un nombre premier impair ℓ, nous définissons le sous-groupe circulaire du pro-ℓ-groupe des unités logarithmiques et nous montrons que pour tout morphisme galoisien ρ du ...Leer más >
Étant donnés un corps abélien réel F de groupe G et un nombre premier impair ℓ, nous définissons le sous-groupe circulaire du pro-ℓ-groupe des unités logarithmiques et nous montrons que pour tout morphisme galoisien ρ du groupe des unités logarithmiques dans Zℓ [G ], l'image du sous-groupe circulaire annule le ℓ-groupe des classes logarithmiques. Nous en déduisons une preuve de l'analogue logarithmique de la conjecture de Solomon.< Leer menos
Resumen en inglés
Given a real abelian field F with group G and an odd prime number ℓ, we define the circular subgroup of the pro-ℓ-group of logarithmic units and we show that for any Galois morphism ρ from the pro-ℓ-group of logarithmic ...Leer más >
Given a real abelian field F with group G and an odd prime number ℓ, we define the circular subgroup of the pro-ℓ-group of logarithmic units and we show that for any Galois morphism ρ from the pro-ℓ-group of logarithmic units to Zℓ [G ], the image of the circular subgroup annihilates the ℓ-group of logarithmic classes. We deduce from this a proof of a logarithmic version of Solomon conjecture.< Leer menos
Palabras clave en inglés
Circular units
Universal norms
Logarithmic classes
Logarithmic units
Solomon conjecture
Orígen
Importado de HalCentros de investigación