Classification of discrete weak KAM solutions on linearly repetitive quasi-periodic sets
PETITE, Samuel
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
PETITE, Samuel
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
< Reduce
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Language
en
Document de travail - Pré-publication
This item was published in
2023-08-24
English Abstract
In discrete schemes, weak KAM solutions may be interpreted as approximations of correctors for some Hamilton-Jacobi equations in the periodic setting. It is known that correctors may not exist in the almost periodic setting. ...Read more >
In discrete schemes, weak KAM solutions may be interpreted as approximations of correctors for some Hamilton-Jacobi equations in the periodic setting. It is known that correctors may not exist in the almost periodic setting. We show the existence of discrete weak KAM solutions for non-degenerate and weakly twist interactions in general. Furthermore, assuming equivariance with respect to a linearly repetitive quasi-periodic set, we completely classify all possible types of weak KAM solutions.Read less <
ANR Project
A l'intérieur de l'entropie nulle - ANR-22-CE40-0011
Origin
Hal imported