RRc-UNet 3D for Lung Tumor Segmentation from CT Scans of Non-Small Cell Lung Cancer Patients
LE, Van-Linh
Institut de Mathématiques de Bordeaux [IMB]
BoRdeaux Institute in onCology [Inserm U1312 - BRIC]
Institut Bergonié [Bordeaux]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
BoRdeaux Institute in onCology [Inserm U1312 - BRIC]
Institut Bergonié [Bordeaux]
Modélisation Mathématique pour l'Oncologie [MONC]
SAUT, Olivier
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Modélisation Mathématique pour l'Oncologie [MONC]
LE, Van-Linh
Institut de Mathématiques de Bordeaux [IMB]
BoRdeaux Institute in onCology [Inserm U1312 - BRIC]
Institut Bergonié [Bordeaux]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
BoRdeaux Institute in onCology [Inserm U1312 - BRIC]
Institut Bergonié [Bordeaux]
Modélisation Mathématique pour l'Oncologie [MONC]
SAUT, Olivier
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Modélisation Mathématique pour l'Oncologie [MONC]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Modélisation Mathématique pour l'Oncologie [MONC]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, ICCV CVAMD 2023 - Workshop of International Conference on Computer Vision, 2023-10-02, Paris. 2023p. 2316-2325
Résumé en anglais
Lung cancer is a grave disease that accounts for more than one million deaths, and Non-Small Cell Lung Cancer (NSCLC) accounts for 85% of all lung cancers. Rapid detection of lung cancer could reduce the mortality rate and ...Lire la suite >
Lung cancer is a grave disease that accounts for more than one million deaths, and Non-Small Cell Lung Cancer (NSCLC) accounts for 85% of all lung cancers. Rapid detection of lung cancer could reduce the mortality rate and increase the patient's survival rate, in which tumor segmentation plays a significant role in the diagnosis and treatment of lung cancer. Nevertheless, manual segmentation by radiologists can be time-consuming and labor-intensive. In recent years, deep learning methods have achieved good results in medical image segmentation. In this paper, RRcUNet 3D, a variant of the Unet model, was proposed to perform tumor segmentation in Computed Tomography (CT) images of NSCLC patients. This network was trained end-to-end from a small set of CT scans of NSCLC patients, then the trained model was validated on another set of CT scans of NSCLC patients. The experimental results showed that our model can provide a highly accurate segmentation of tumors in the 3D volume of CT images.< Réduire
Mots clés en anglais
Lung tumor segmentation
NSCLC
Unet
Deep learning
Origine
Importé de halUnités de recherche