Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierBoRdeaux Institute in onCology [Inserm U1312 - BRIC]
hal.structure.identifierInstitut Bergonié [Bordeaux]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorLE, Van-Linh
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorSAUT, Olivier
dc.date.accessioned2024-04-04T02:33:02Z
dc.date.available2024-04-04T02:33:02Z
dc.date.created2023
dc.date.issued2023
dc.date.conference2023-10-02
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190439
dc.description.abstractEnLung cancer is a grave disease that accounts for more than one million deaths, and Non-Small Cell Lung Cancer (NSCLC) accounts for 85% of all lung cancers. Rapid detection of lung cancer could reduce the mortality rate and increase the patient's survival rate, in which tumor segmentation plays a significant role in the diagnosis and treatment of lung cancer. Nevertheless, manual segmentation by radiologists can be time-consuming and labor-intensive. In recent years, deep learning methods have achieved good results in medical image segmentation. In this paper, RRcUNet 3D, a variant of the Unet model, was proposed to perform tumor segmentation in Computed Tomography (CT) images of NSCLC patients. This network was trained end-to-end from a small set of CT scans of NSCLC patients, then the trained model was validated on another set of CT scans of NSCLC patients. The experimental results showed that our model can provide a highly accurate segmentation of tumors in the 3D volume of CT images.
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.source.titleProceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops
dc.subject.enLung tumor segmentation
dc.subject.enNSCLC
dc.subject.enUnet
dc.subject.enDeep learning
dc.title.enRRc-UNet 3D for Lung Tumor Segmentation from CT Scans of Non-Small Cell Lung Cancer Patients
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]
bordeaux.page2316-2325
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleICCV CVAMD 2023 - Workshop of International Conference on Computer Vision
bordeaux.countryFR
bordeaux.title.proceedingProceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops
bordeaux.conference.cityParis
bordeaux.peerReviewedoui
hal.identifierhal-04236510
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2023-10-02
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04236510v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Proceedings%20of%20the%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)%20Workshops&rft.date=2023&rft.spage=2316-2325&rft.epage=2316-2325&rft.au=LE,%20Van-Linh&SAUT,%20Olivier&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record