Numerical Simulation of In-Flight Iced Surface Roughness
BEAUGENDRE, Héloïse
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
BEAUGENDRE, Héloïse
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Chapitre d'ouvrage
Ce document a été publié dans
Handbook of Numerical Simulation of In-Flight Icing, Handbook of Numerical Simulation of In-Flight Icing. 2023-05-04p. 1-48
Springer International Publishing
Résumé en anglais
CFD is a primary tool used to assess the in-flight effects of atmospheric icing onaircraft. In-flight ice accretion codes use CFD computed quantities, such as shearstress and heat transfer, to predict ice shape formation ...Lire la suite >
CFD is a primary tool used to assess the in-flight effects of atmospheric icing onaircraft. In-flight ice accretion codes use CFD computed quantities, such as shearstress and heat transfer, to predict ice shape formation over rough surfaces. Theequivalent sandgrain roughness approach is the model commonly used in icingcodes for the prediction of skin friction and heat fluxes over iced surfaces.Additional turbulent Prandtl number corrections can be added to the ReynoldsAveraged Navier-Stokes (RANS) equations turbulence model to refine the heattransfer. Still, uncertainties persist in identifying the roughness parameters toinput into the thermal correction, leaving the characterization of rough surfacesincomplete in terms of research. This chapter develops a methodology for theestimation of roughness input parameters based on the observation of experimentalice accretion. Metamodeling involving Polynomial Chaos Expansion (PCE)and calibration with a Bayesian inversion are employed. The methodology isapplied to a NACA0012 airfoil, yielding a glaze ice cross-sectional area andmaximum thickness with less than a 6% error from experiments. The approachopens perspectives for the estimation of appropriate case-dependent roughnessparameters for RANS-based ice shape predictions.< Réduire
Mots clés en anglais
In-flight icing
Ice accretion simulation
Iced surface roughness
Uncertainty quantification in icing
Polynomial chaos expansion
Bayesian inversion
Icing model calibration
Origine
Importé de halUnités de recherche