Afficher la notice abrégée

hal.structure.identifierEcole de Technologie Supérieure [Montréal] [ETS]
dc.contributor.authorIGNATOWICZ, Kevin
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBEAUGENDRE, Héloïse
hal.structure.identifierEcole de Technologie Supérieure [Montréal] [ETS]
dc.contributor.authorMORENCY, François
dc.date.accessioned2024-04-04T02:31:52Z
dc.date.available2024-04-04T02:31:52Z
dc.date.issued2023-05-04
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190336
dc.description.abstractEnCFD is a primary tool used to assess the in-flight effects of atmospheric icing onaircraft. In-flight ice accretion codes use CFD computed quantities, such as shearstress and heat transfer, to predict ice shape formation over rough surfaces. Theequivalent sandgrain roughness approach is the model commonly used in icingcodes for the prediction of skin friction and heat fluxes over iced surfaces.Additional turbulent Prandtl number corrections can be added to the ReynoldsAveraged Navier-Stokes (RANS) equations turbulence model to refine the heattransfer. Still, uncertainties persist in identifying the roughness parameters toinput into the thermal correction, leaving the characterization of rough surfacesincomplete in terms of research. This chapter develops a methodology for theestimation of roughness input parameters based on the observation of experimentalice accretion. Metamodeling involving Polynomial Chaos Expansion (PCE)and calibration with a Bayesian inversion are employed. The methodology isapplied to a NACA0012 airfoil, yielding a glaze ice cross-sectional area andmaximum thickness with less than a 6% error from experiments. The approachopens perspectives for the estimation of appropriate case-dependent roughnessparameters for RANS-based ice shape predictions.
dc.language.isoen
dc.publisherSpringer International Publishing
dc.publisher.locationCham
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.source.titleHandbook of Numerical Simulation of In-Flight Icing
dc.subject.enIn-flight icing
dc.subject.enIce accretion simulation
dc.subject.enIced surface roughness
dc.subject.enUncertainty quantification in icing
dc.subject.enPolynomial chaos expansion
dc.subject.enBayesian inversion
dc.subject.enIcing model calibration
dc.title.enNumerical Simulation of In-Flight Iced Surface Roughness
dc.typeChapitre d'ouvrage
dc.identifier.doi10.1007/978-3-030-64725-4_29-1
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halPhysique [physics]/Mécanique [physics]/Thermique [physics.class-ph]
bordeaux.page1-48
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.title.proceedingHandbook of Numerical Simulation of In-Flight Icing
hal.identifierhal-04358583
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04358583v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Handbook%20of%20Numerical%20Simulation%20of%20In-Flight%20Icing&rft.date=2023-05-04&rft.spage=1-48&rft.epage=1-48&rft.au=IGNATOWICZ,%20Kevin&BEAUGENDRE,%20H%C3%A9lo%C3%AFse&MORENCY,%20Fran%C3%A7ois&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée