Projected Block Coordinate Descent for sparse spike estimation.
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We consider the problem of recovering off-the-grid spikes from linear measurements. The state of the art Over-Parametrized Continuous Orthogonal Matching Pursuit (OP-COMP) with Projected Gradient Descent (PGD) successfully ...Leer más >
We consider the problem of recovering off-the-grid spikes from linear measurements. The state of the art Over-Parametrized Continuous Orthogonal Matching Pursuit (OP-COMP) with Projected Gradient Descent (PGD) successfully recovers those signals. In most cases, the main computational cost lies in a unique global descent on all parameters (positions and amplitudes). In this paper, we propose to improve this algorithm by accelerating this descent step. We introduce a new algorithm, based on Block Coordinate Descent, that takes advantages of the sparse structure of the problem. Based on qualitative theoretical results, this algorithm shows improvement in calculation times in realistic synthetic microscopy experiments.< Leer menos
Palabras clave en inglés
spike super-resolution
non-convex optimization
over-parametrization
block-coordinate descent
Proyecto ANR
Régularisation performante de problèmes inverses en grande dimension pour le traitement de données - ANR-20-CE40-0001
Orígen
Importado de HalCentros de investigación